Skip to main content

Researchers create lunar life support system by baking moon dust

For future missions to the moon — especially if we want to send a crew there for a significant period of time — we’ll need to find a way to provide for essential needs. Bringing a whole lot of water and oxygen along on a rocket isn’t practical because it’s so heavy, so a different approach aims to make use of the resources available on the moon to create what’s needed.

Now, future lunar explorers may be able to create water and oxygen from moon dust, using research from the European Space Agency (ESA) and others. A team has found a way to produce both water and oxygen by baking dusty lunar soil, which is called regolith.

Artist impression of a Moon Base concept, with solar arrays for energy generation, greenhouses for food production, and habitats shielded with regolith.
Artist impression of a Moon Base concept, with solar arrays for energy generation, greenhouses for food production, and habitats shielded with regolith. ESA - P. Carril

To create essential resources, first, the regolith is vaporized along with hydrogen and methane by heating it to 1,800 degrees Fahrenheit, turning it directly from solid to a gas. The gases are piped to a converter and condenser to extract the water, and then oxygen can be extracted using electrolysis. The process creates by-products of methane and hydrogen, which can then be recycled to start the process again.

“Our experiments show that the rig is scalable and can operate in an almost completely self-sustained closed loop, without the need for human intervention and without getting clogged up,” said Prof Michèle Lavagna, of the Politecnico Milano, who led the experiments.

Currently, the system has only been tested in the lab. The next step is to actually build the technology which could be used in practice by astronauts and to perfect details like the temperatures and the duration of different phases of the process. Eventually, this could form the basis of a human base on the moon.

“The capability of having efficient water and oxygen production facilities on-site is fundamental for human exploration and to run high quality science directly on the Moon,” said Lavagna. “These laboratory experiments have deepened our understanding of each step in the process. It is not the end of the story, but it’s very a good starting point.”

The research was presented at the Europlanet Science Congress 2021.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Japanese lander touches down on the moon, but suffers power glitch
Artist's illustration of the SLIM lander touching down on the moon.

A Japanese mission has succeeded in landing on the moon, but it likely won't last for more than a day due to an issue with its solar cells. The Smart Lander for Investigating Moon (SLIM), from Japanese space agency JAXA, is the second mission in a week to have trouble attempting to land on the moon, showing that despite the Apollo landings occurring more than 50 years ago, lunar landings continue to be a major challenge.

Artist's illustration of the SLIM lander touching down on the moon. JAXA

Read more
NASA tests moon elevator for Artemis III mission
Two NASA astronauts test an elevator for the Artemis III lunar mission.

NASA’s highly anticipated Artemis III mission will see the first woman and first person of color step onto the lunar service in a moment that will also mark the first human lunar landing since 1972.

If the space agency sticks to its schedule, the mission will take place in 2025, but there’s still much work to be done to ensure that that happens.

Read more
Key ingredient for life found at Saturn’s icy moon Enceladus
Water from the subsurface ocean of Saturn’s moon Enceladus sprays from huge fissures out into space.

When scientists search for places beyond Earth that could potentially host life, they don't only consider far-off exoplanets. They are also interested in locations right here in our solar system -- and some of the most promising locations are not planets but moons. Saturn's icy moon Enceladus, for example, is thought to host a saltwater ocean beneath a thick icy crust, making it a potential location where life could exist.

Recently, researchers have found a key ingredient for life in the plumes of water that spew from Enceladus's surface. By analyzing data from the Cassini mission, they not only identified hydrogen cyanide but also found that the moon has a source of chemical energy that could fuel life as well.

Read more