Skip to main content

Researchers activate graphene’s hidden superconductor abilities

Graphene
Image used with permission by copyright holder
If metals were students, then graphene would be the annoyingly gifted kid at the front of the class, answering every question perfectly while everyone else looks on with a combination of envy and annoyance. A miracle material with seemingly unlimited applications, graphene is ultrastrong, ultrathin — and can potentially do everything from help detect cells to letting us take better photos.

Now, like any overachiever worth its electrons, it’s got another confirmed skill: The long-speculated-upon ability to work as a superconductor, meaning that electrical current flow through it with zero resistance.

In a new paper, published in the journal Nature Communications, researchers at the United Kingdom’s Cambridge University describe how graphene’s superconducting abilities can be activated by coupling it with a material called praseodymium cerium copper oxide (PCCO).

This is the first time researchers have managed to make graphene a superconductor without having to alter it, such as by doping it with calcium atoms as in a previous study. Although the graphene was coupled with PCCO for this experiment, the researchers were able to clearly distinguish between the superconductivity of PCCO and that of the graphene, due to the “spin states” of electrons. In the case of PCCO, this spin state is what is referred to as a “d-wave state,” while investigators on the project think graphene may show a rare “p-wave” form.

Superconductors have long been used to generate large magnetic fields for devices like MRI scanners. Long term, though, they offer an even more exciting possibility: Unlimited energy. That’s because they don’t need to be constantly resupplied with current.

“One day, the dream is to make your computer or your iPhone work without dissipating energy,” junior research fellow Angelo Di Bernardo, one of the paper’s authors, told Digital Trends. “You’ll just charge it once and then you can forget about having to charge it again its entire lifetime.”

Right now, the challenge is that such superconductors only work at extremely low temperatures, way below zero. Although the PCCO material used in this experiment was also cooled to a very low temperature, the hope is that in future it will be possible to choose alternate materials that can be closer to room temperature.

Dr. Di Bernardo described the work to us as “a fundamental discovery, rather than something that will have practical application in the short term.” However, he said that it could offer a slew of possible use-cases, most notably to help power quantum computers.

There’s still plenty of work that needs to be done to build on this discovery, but it is hoped that this breakthrough will represent a major turning point in our ability to develop molecular electronics devices with novel functionalities, based on superconducting graphene.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Bacteria could help mass-produce wonder material graphene at scale
university exeter graphene optoelectronics

There’s no doubting that graphene, a single layer of graphite with the atoms arranged in a honeycomb hexagonal pattern, is one of science’s most versatile new materials. Capable of doing everything from filtering the color out of whisky to creating body armor that’s stronger than diamonds, graphene exhibits some truly unique qualities. However, while some mainstream uses of graphene have emerged, its use remains limited due to the challenge of producing it at scale. The most common way to make graphene still involves using sticky tape to strip a layer of atoms off ordinary graphite.

That’s something that researchers from the University of Rochester and the Netherlands’ Delft University of Technology have been working to change. They’ve figured out a way to mass produce graphene by mixing oxidized graphite with bacteria. Their method is cost-efficient, time-efficient, and sustainable -- and may just make graphene a whole lot more available in the process.

Read more
Digital Trends’ Top Tech of CES 2023 Awards
Best of CES 2023 Awards Our Top Tech from the Show Feature

Let there be no doubt: CES isn’t just alive in 2023; it’s thriving. Take one glance at the taxi gridlock outside the Las Vegas Convention Center and it’s evident that two quiet COVID years didn’t kill the world’s desire for an overcrowded in-person tech extravaganza -- they just built up a ravenous demand.

From VR to AI, eVTOLs and QD-OLED, the acronyms were flying and fresh technologies populated every corner of the show floor, and even the parking lot. So naturally, we poked, prodded, and tried on everything we could. They weren’t all revolutionary. But they didn’t have to be. We’ve watched enough waves of “game-changing” technologies that never quite arrive to know that sometimes it’s the little tweaks that really count.

Read more
Digital Trends’ Tech For Change CES 2023 Awards
Digital Trends CES 2023 Tech For Change Award Winners Feature

CES is more than just a neon-drenched show-and-tell session for the world’s biggest tech manufacturers. More and more, it’s also a place where companies showcase innovations that could truly make the world a better place — and at CES 2023, this type of tech was on full display. We saw everything from accessibility-minded PS5 controllers to pedal-powered smart desks. But of all the amazing innovations on display this year, these three impressed us the most:

Samsung's Relumino Mode
Across the globe, roughly 300 million people suffer from moderate to severe vision loss, and generally speaking, most TVs don’t take that into account. So in an effort to make television more accessible and enjoyable for those millions of people suffering from impaired vision, Samsung is adding a new picture mode to many of its new TVs.
[CES 2023] Relumino Mode: Innovation for every need | Samsung
Relumino Mode, as it’s called, works by adding a bunch of different visual filters to the picture simultaneously. Outlines of people and objects on screen are highlighted, the contrast and brightness of the overall picture are cranked up, and extra sharpness is applied to everything. The resulting video would likely look strange to people with normal vision, but for folks with low vision, it should look clearer and closer to "normal" than it otherwise would.
Excitingly, since Relumino Mode is ultimately just a clever software trick, this technology could theoretically be pushed out via a software update and installed on millions of existing Samsung TVs -- not just new and recently purchased ones.

Read more